
School of Computer Science sdandel.scs@dauniv.ac.in

Function Overloading

• In C++, two or more functions can share

the same name as long as their parameter

declarations are different.

• In this situation, the functions that share

the same name are said to be overloaded,

and the process is referred to as function

overloading

School of Computer Science sdandel.scs@dauniv.ac.in

• To see why function overloading is important,

first consider three functions defined by the C

subset: abs(), labs(), and fabs(). The abs()

function returns the absolute value of an

integer, labs() returns the absolute value of a

long, and fabs() returns the absolute value of a

double.

• Although these functions perform almost

identical actions, in C three slightly different

names must be used to represent these

essentially similar

tasks.

•Example: Function Overloading

School of Computer Science sdandel.scs@dauniv.ac.in

Function Overloading

• Function overloading is the process of

using the same name for two or more

functions.

• The secret to overloading is that each

redefinition of the function must use

either-

• different types of parameters

• different number of parameters.

School of Computer Science sdandel.scs@dauniv.ac.in

Function Overloading and

Ambiguity

• Ambiguous statements are errors, and

programs containing ambiguity will not

compile.

• By far the main cause of ambiguity

involves C++'s automatic type

conversions.

School of Computer Science sdandel.scs@dauniv.ac.in

Function Overloading and

Ambiguity

• void f(int x);

• void f(int &x); // error

• two functions cannot be overloaded when

the only difference is that one takes a

reference parameter and the other takes a

normal, call-by-value parameter.

School of Computer Science sdandel.scs@dauniv.ac.in

• // This program contains an error.

• #include <iostream>

• using namespace std;

• void f(int x);

• void f(int &x); // error

• int main()

• {

• int a=10;

• f(a); // error, which f()?

• return 0;

• }

• void f(int x)

• {

• cout << "In f(int)\n";

• }

• void f(int &x)

• {

• cout << "In f(int &)\n";

• }

School of Computer Science sdandel.scs@dauniv.ac.in

• char myfunc(unsigned char ch);

• char myfunc(char ch);

• In C++, unsigned char and char are

not inherently ambiguous.

School of Computer Science sdandel.scs@dauniv.ac.in

• #include <iostream>

• using namespace std;

• char myfunc(unsigned char ch);

• char myfunc(char ch);

• int main()

• {

• cout << myfunc('c'); // this calls myfunc(char)

• cout << myfunc(88) << " "; // ambiguous

• return 0;

• }

• char myfunc(unsigned char ch)

• {

• return ch-1;

• }

• char myfunc(char ch)

• {

• return ch+1;

• }

School of Computer Science sdandel.scs@dauniv.ac.in

• #include <iostream>

• using namespace std;

• float myfunc(float i);

• double myfunc(double i);

• int main()

• {

• cout << myfunc(10.1) << " "; // unambiguous, calls
myfunc(double)

• cout << myfunc(10); // ambiguous

• return 0;

• }

• float myfunc(float i)

• {

• return i;

• }

• double myfunc(double i)

• {

• return -i;

• }

School of Computer Science sdandel.scs@dauniv.ac.in

Others

• Typedef int integer;

• Enum days{mon,tue,wed}

• Void f(int);

• Void f(mon);

School of Computer Science sdandel.scs@dauniv.ac.in

Overloading Constructor Functions

• Many times you will create a class for which

there are two or more possible ways to

construct an object.

• In these cases, you will want to provide an

overloaded constructor function for each way.

• The user is free to choose the best way to

construct an object given the specific

circumstance.

School of Computer Science sdandel.scs@dauniv.ac.in

Copy Constructors

• By default, when one object is used to initialize

another.

• C++ performs a bitwise copy.

• For Example: MyClass B= A;

• If a bitwise copy is performed, then B will be an

exact copy of A. This means that B will be using the

same piece of allocated memory that A is using,

instead of allocating its own.

• If MyClass includes a destructor that frees the

memory, then the same piece of memory will be

freed twice when A and B are destroyed!

School of Computer Science sdandel.scs@dauniv.ac.in

Copy Constructor…….

• The same type of problem can occur in two
additional ways:

• first, when a copy of an object is made when it
is passed as an argument to a function;

• second, when a temporary object is created as a
return value from a function.

• To solve the type of problem just described, C++
allows you to create a copy constructor, which
the compiler uses when one object initializes
another.

School of Computer Science sdandel.scs@dauniv.ac.in

• The most common general form of a copy
constructor is
– classname (const classname &o) {

– // body of constructor

– }

• Here, o is a reference to the object on the
right side of the initialization.

• It is permissible for a copy constructor to have
additional parameters as long as they have
default

arguments defined for them.

• However, in all cases the first parameter must
be a

reference to the object doing the initializing.

School of Computer Science sdandel.scs@dauniv.ac.in

• It is important to understand that C++ defines

two distinct types of situations in which the

value of one object is given to another.

• The first is assignment.

• The second is initialization, which can occur

any of three ways:

• myclass x = y; // y explicitly initializing x

• func(y); // y passed as a parameter

• y = func(); // y receiving a temporary,

return object

School of Computer Science sdandel.scs@dauniv.ac.in

Example: copy_cons1
• The copy constructor is called, memory for the new
array is allocated and stored in x.p, and the
contents of num are copied to x's array.

• In this way, x and num have arrays that contain the
same values, but each array is separate and
distinct.

• If the copy constructor had not been created, the
default bitwise initialization would have resulted in x
and num sharing the same memory for their arrays.

• array a(10);

• // ...

• array b(10);

• b = a; // does not call copy constructor

School of Computer Science sdandel.scs@dauniv.ac.in

Finding the Address of an

Overloaded Function

• You can obtain the address of a function.

• Assign the address of the function to a pointer and then
call that function through that pointer

• When you assign the address of an overloaded function
to a function pointer, it is the declaration of the pointer
that determines which function's address is obtained.

• Further, the declaration of the function pointer must
exactly match one and only one of the overloaded
function's declarations.

• Example:

School of Computer Science sdandel.scs@dauniv.ac.in

Default Function Arguments

• C++ allows a function to assign a parameter

a default value when no argument

corresponding to that parameter is specified

in a call to that function.

• The default value is specified in a manner

syntactically similar to a variable

initialization

School of Computer Science sdandel.scs@dauniv.ac.in

Example:

void myfunc(double d = 0.0)

{

// ...

}

• Now, myfunc() can be called one of two ways, as the
following examples show:
– myfunc(198.234); // pass an explicit value

– myfunc(); // let function use default

• The first call passes the value 198.234 to d.

• The second call automatically gives d the

default value zero.

School of Computer Science sdandel.scs@dauniv.ac.in

• There are two advantages to including
default arguments, when appropriate, in a
constructor function.

• First, they prevent you from having to
provide an overloaded constructor that
takes no parameters.

• Second, defaulting common initial values
is more convenient than specifying them
each time an object is declared.

• In some situations, default arguments can
be used as a shorthand form of function
overloading.

School of Computer Science sdandel.scs@dauniv.ac.in

Operator Overloading.

• In C++, you can overload most operators

so that they perform special operations

relative to classes that you create.

• For example, a class that maintains a

stack might overload + to perform a push

operation and – – to perform a pop.

School of Computer Science sdandel.scs@dauniv.ac.in

Overloadable operators.

,()[]||&&>=<=><!===

>>=<<=^=|=&=%=/=-=+==

>><<^|&%/*-+Binary:

deletenew

->*->()--++&~!*-+Unary:

School of Computer Science sdandel.scs@dauniv.ac.in

• You overload operators by creating
operator functions.

• An operator function defines the
operations that the overloaded operator
will perform relative to the class upon
which it will work.

• An operator function is created using
the keyword operator.

• Operator functions can be either
members or nonmembers of a class.

• Nonmember operator functions are
almost always friend functions of the
class,

School of Computer Science sdandel.scs@dauniv.ac.in

Creating a Member Operator

Function

• A member operator function takes this

general form:

• ret-type class-name::operator#(arg-

list)

• {

• // operations

• }

School of Computer Science sdandel.scs@dauniv.ac.in

• Often, operator functions return an object of
the class they operate on, but ret-type can

be any valid type.

• The # is a placeholder. When you create an
operator function, substitute the operator for
the #.

• For example, if you are overloading the /
operator, use operator/.

• When you are overloading a unary operator,
arg-list will be empty.

• When you are overloading binary operators,
arg-list will contain one parameter.

School of Computer Science sdandel.scs@dauniv.ac.in

of the

Increment and Decrement

Operators

• In older versions of C++, it was not possible to
specify separate prefixand postfixversions of an
overloaded ++ or – –.

• The prefix form was used for both.

• The posfix is declared like this:
– loc operator++(int x);

• If the ++ precedes its operand, the operator++()
function is called.

• If the ++ follows its operand, the
operator++(int x) is called and x has the value
zero.

School of Computer Science sdandel.scs@dauniv.ac.in

Decrement

// Prefix decrement

type operator– –() {

// body of prefix operator

}

// Postfix decrement

type operator– –(int x) {

// body of postfix operator

}

School of Computer Science sdandel.scs@dauniv.ac.in

Overloading the Shorthand

Operators
• You can overload any of C++'s "shorthand"
operators, such as +=, –=, and the like.

• For example, this function overloads += relative
to loc:

• loc loc::operator+=(loc op2)

• {

• longitude = op2.longitude + longitude;

• latitude = op2.latitude + latitude;

• return *this;

• }

School of Computer Science sdandel.scs@dauniv.ac.in

Operator Overloading Restrictions

• You cannot alter the precedence of an

operator.

• You cannot change the number of operands

that an operator takes.

• Except for the function call operator functions

cannot have default arguments.

• Finally, these operators cannot be

overloaded:

. .* :: ?: sizeof

School of Computer Science sdandel.scs@dauniv.ac.in

Friend operator funcions

• There are some restrictions that apply to
friend operator functions.

• First, you may not overload the =, (), [],
or –> operators by using a friend function.

• Second, when overloading the increment
or decrement operators, you will need to
use a reference parameter when using a
friend function.

School of Computer Science sdandel.scs@dauniv.ac.in

Using a Friend to Overload ++ or –

–

• If you want to use a friend function to

overload the increment or decrement

operators, you must pass the operand as

a reference parameter.

• This is because friend functions do not

have this pointers.

School of Computer Science sdandel.scs@dauniv.ac.in

Friend Operator Functions Add

Flexibility
• Ob + 100 // valid

• 100 + Ob // invalid

• To allow both object+integer and integer+object,

simply overload the function twice—one version

for each situation.

• Thus, when you overload an operator by using

two friend functions, the object may appear on

either the left or right side of the operator.

School of Computer Science sdandel.scs@dauniv.ac.in

Overloading new and delete

• The skeletons for the functions that overload new and delete
are shown here:

// Allocate an object.

void *operator new(size_t size)

{

/* Perform allocation. Throw bad_alloc on failure.

Constructor called automatically. */

return pointer_to_memory;

}

// Delete an object.

void operator delete(void *p)

{

/* Free memory pointed to by p.

Destructor called automatically. */

}

School of Computer Science sdandel.scs@dauniv.ac.in

New Delete

• The type size_t is a defined type capable of
containing the largest single piece of memory
that can be allocated. (size_t is essentially an
unsigned integer.)

• The parameter size will contain the number
of bytes needed to hold the object being
allocated.

• The overloaded new function must return a
pointer to the memory that it allocates, or

throw a bad_alloc exception if an allocation
error occurs.

School of Computer Science sdandel.scs@dauniv.ac.in

Overloading Some Special

Operators

• Overloading []

• type class-name::operator[](int i)

• {

• // . . .

• }

• Technically, the parameter does not have to
be of type int, but an operator[]() function is
typically used to provide array subscripting,
and as such, an integer value is generally
used.

• Given an object called O, the expression

• O[3] translates into this call to the operator[
]() function:

• O.operator[](3)

School of Computer Science sdandel.scs@dauniv.ac.in

Overloading ()

• Given the overloaded operator function
declaration

• double operator()(int a, float f, char *s);

• and an object O of its class, then the
statement

• O(10, 23.34, "hi");

• translates into this call to the operator()
function.

• O.operator()(10, 23.34, "hi");

• In general, when you overload the ()
operator, you define the parameters that you
want to pass to that function. When you use
the () operator in your program, the

School of Computer Science sdandel.scs@dauniv.ac.in

Overloading –>

• The –> pointer operator, also called the class
member access operator, is considered a
unary operator when overloading. Its general
usage is shown here:

• object->element;

• Here, object is the object that activates the
call. The operator–>() function must return a
pointer to an object of the class that
operator–>() operates upon.

• The element must be some member
accessible within the object.

School of Computer Science sdandel.scs@dauniv.ac.in

Overloading the Comma Operator

• If you want the overloaded comma to

perform in a fashion similar to its normal

operation, then your version must

discard the values of all operands

except the rightmost.

• The rightmost value becomes the result

of the comma operation.

School of Computer Science sdandel.scs@dauniv.ac.in

Inheritance

School of Computer Science sdandel.scs@dauniv.ac.in

Inheritance

• It allows the creation of hierarchical
classifications.

• Using inheritance, you can create a
general class that defines traits common
to a set of related items.

• This class may then be inherited by other,
more specific classes, each adding only
those things that are unique to the
inheriting class.

School of Computer Science sdandel.scs@dauniv.ac.in

Inheritance

• A class that is inherited is referred to as a

base class.

• The class that does the inheriting is called

the derived class.

• Further, a derived class can be used as a

base class for another derived class. In

this way, multiple inheritance is achieved.

School of Computer Science sdandel.scs@dauniv.ac.in

Base-Class Access Control

• When a class inherits another, the members of

the base class become members of the derived

class.

• Class inheritance uses this general form:

class derived-class-name : access base-class-name {

// body of class

};

• The access status of the base-class members

inside the derived class is determined by access.

School of Computer Science sdandel.scs@dauniv.ac.in

• The base-class access specifier must be

either public, private, or protected.

• If no access specifier is present, the

access specifier is private by default if the

derived class is a class.

• If the derived class is a struct, then public

is the default in the absence of an explicit

access specifier.

School of Computer Science sdandel.scs@dauniv.ac.in

What to inherit?

• In principle, every member of a base class

is inherited by a derived class

– just with different access permission

School of Computer Science sdandel.scs@dauniv.ac.in

Access Control Over the Members

• Two levels of access control

over class members

– class definition

– inheritance type

base class/ superclass/

parent class

derived class/ subclass/

child class

d
e
ri
v
e
 f
ro
m

m
e
m
b
e
rs
 g
o
e
s
 t
o

class Point{

protected: int x, y;

public: void set(int a, int b);

};

class Circle : public Point{

… …

};

School of Computer Science sdandel.scs@dauniv.ac.in

Even more …

• A derived class can override methods defined in its

parent class. With overriding,

– the method in the subclass has the identical signature to the

method in the base class.

– a subclass implements its own version of a base class

method.

class A {

protected:

int x, y;

public:

void print ()

{cout<<“From A”<<endl;}

};

class B : public A {

public:

void print ()

{cout<<“From B”<<endl;}

};

School of Computer Science sdandel.scs@dauniv.ac.in

Private, Public, and Protected

Base Classes
• A base class may be specified to be private,
public, or protected. Unless so specified, the
base class is assumed to be private:
class A {

private:

int x;

void Fx (void);

public:

int y;

void Fy (void);

protected:

int z;

void Fz (void);

};

School of Computer Science sdandel.scs@dauniv.ac.in

class B : A {}; // A is a private base class of B

class C : private A {}; // A is a private base

class of C

• The behavior of these is as follows :

• All the members of a private base class

become private members of the derived

class. So x, Fx, y, Fy, z, and Fz all become

private members of B and C.

School of Computer Science sdandel.scs@dauniv.ac.in

class D : public A {}; // A is a public base class of D

• The behavior of these is as follows :

• The members of a public base class keep their

access characteristics in the derived class. So,

x and Fx becomes private members of D, y and

Fy become public members of D, and z and Fz

become protected members of D.

School of Computer Science sdandel.scs@dauniv.ac.in

class E : protected A {}; // A is a protected

base class of E

• The behavior of these is as follows :

• The private members of a protected base class

become private members of the derived class.

Whereas, the public and protected members of a

protected base class become protected

members of the derived class. So, x and Fx

become private members of E, and y, Fy, z, and

Fz become protected members of E.

School of Computer Science sdandel.scs@dauniv.ac.in

Base class access inheritance rules.

protectedprotectedprivateProtected

Member

protectedpublicprivatePublic Member

privateprivateprivatePrivate Member

Protected

Derived

Public DerivedPrivate

DerivedBase Class

School of Computer Science sdandel.scs@dauniv.ac.in

Private access specifier

• When the base class is inherited by using the
private access specifier, all public and

protected members of the base class become
private members of the derived class.Example:

• When a base class' access specifier is private,
public and protected members of the base
become private members of the derived class.

• This means that they are still accessible by
members of the derived class but cannot be
accessed by parts of your program that are not
members of either the base or derived class.

School of Computer Science sdandel.scs@dauniv.ac.in

• It is also possible to individually exempt a base

class member from the access changes

specified by a derived class, so that it retains its

original access characteristics. To do this, the

exempted member is fully named in the derived

class under its original access characteristic. For

example:

class C : private A {

//...

public: A::Fy; // makes Fy a public member of C

protected:A::z; // makes z a protected member of C

};

School of Computer Science sdandel.scs@dauniv.ac.in

Inheritance and protected Members

• When a member of a class is declared as

protected, that member is not accessible by

other, nonmember elements of the program.

• With one important exception, access to a

protected member is the same as access to a

private member—it can be accessed only by

other members of its class. The sole exception

to this is when a protected member is inherited.

School of Computer Science sdandel.scs@dauniv.ac.in

Protected in Public Inheritance

• When a derived class is used as a base

class for another derived class, any

protected member of the initial base class

that is inherited (as public) by the first

derived class may also be inherited as

protected again by a second derived class.

School of Computer Science sdandel.scs@dauniv.ac.in

Protected Base-Class Inheritance

• It is possible to inherit a base class as

protected.

• When this is done, all public and protected

members of the base class become

protected members of the derived class.

• For example,

School of Computer Science sdandel.scs@dauniv.ac.in

Inheriting Multiple Base Classes

• It is possible for a derived class to inherit two

or more base classes.

• To inherit more than one base class, use a

comma-separated list.

• Further, be sure to use an access-specifier

for each base inherited.

School of Computer Science sdandel.scs@dauniv.ac.in

Multiple Inheritance

• Multiple inheritance

– Derived class has several base classes

– Powerful, but can cause ambiguity problems

• If both base classes have functions of the same

name

• Solution: specify exact function using ::

– myObject.BaseClass1::function()

– Format

• Use comma-separated list
class Derived : public Base1, public Base2{

contents

}

School of Computer Science sdandel.scs@dauniv.ac.in

Constructors and Destructors

• When an object of a derived class is created, the

base class constructor is applied to it first,

followed by the derived class constructor.

• When the object is destroyed, the destructor of

the derived class is applied first, followed by the

base class destructor.

• Constructors are applied in order of derivation

and destructors are applied in the reverse order.

School of Computer Science sdandel.scs@dauniv.ac.in

• class A { /* ... */ }

• class B : public A { /* ... */ }

• class C : public B { /* ... */ }

A::A

B::B

C::C

A::~A

B::~B

C::~C.........

c being constructed c being destroyed

School of Computer Science sdandel.scs@dauniv.ac.in

Constructors: Multi level Inheritance

• In cases of multiple inheritance (that is,

where a derived class becomes the base

class for another derived class), the

general rule applies:

• Constructors are called in order of

derivation, destructors in reverse order.

For example,

School of Computer Science sdandel.scs@dauniv.ac.in

Constructors: Multiple Inheritance

• Constructors are called in order of derivation, left to
right, as specified in derived's inheritance list.

• Destructors are called in reverse order, right to left.

• class derived: public base2, public base1

then the output of this program would have looked
like this:

Constructing base2

Constructing base1

Constructing derived

Destructing derived

Destructing base1

Destructing base2

School of Computer Science sdandel.scs@dauniv.ac.in

Passing Parameters to Base-Class

Constructors

derived-constructor(arg-list) : base1(arg-list),

base2(arg-list),

// ...

baseN(arg-list)

{

// body of derived constructor

}

School of Computer Science sdandel.scs@dauniv.ac.in

Virtual Base Classes

• An element of ambiguity can be introduced

into a C++ program when multiple base

classes are inherited.

• Example: Ambiguity

• There are two ways to remedy the preceding

program.

• The first is to apply the scope resolution

operator to i and manually select one i.

School of Computer Science sdandel.scs@dauniv.ac.in

• When two or more objects are derived from a
common base class, you can prevent multiple
copies of the base class from being present in
an object derived from those objects by
declaring the base class as virtual when it is
inherited.

• You accomplish this by preceding the base
class' name with the keyword virtual when it is
inherited.

• Inherited base as virtual, any multiple
inheritance involving them will cause only one
copy of base to be present.

Virtual Base Classes

School of Computer Science sdandel.scs@dauniv.ac.in

Thus,

• The only difference between a normal

base class and a virtual one is what

occurs when an object inherits the base

more than once.

• If virtual base classes are used, then only

one base class is present in the object.

• Otherwise, multiple copies will be found.

School of Computer Science sdandel.scs@dauniv.ac.in

Run Time Polymorphism

(Virtual Functions)

• Polymorphism is supported by C++ both at

compile time and at run time.

• Compile-time polymorphism is achieved

by overloading functions and operators.

• Run-time polymorphism is accomplished

by using inheritance and virtual functions.

School of Computer Science sdandel.scs@dauniv.ac.in

Virtual Functions

• A virtual function is a member function that is
declared within a base class and redefined by
a derived class.

• To create a virtual function, precede the
function's declaration in the base class with
the keyword virtual.

• When a class containing a virtual function is
inherited, the derived class redefines the
virtual function to fit its own needs.

School of Computer Science sdandel.scs@dauniv.ac.in

• In essence, virtual functions implement the "one

interface, multiple methods" philosophy that

underlies polymorphism.

• The virtual function within the base class defines

the form of the interface to that function.

• Each redefinition of the virtual function by a

derived class implements its operation as it

relates specifically to the derived class.

Virtual Functions

School of Computer Science sdandel.scs@dauniv.ac.in

• When accessed "normally," virtual functions

behave just like any other type of class

member function.

• However, what makes virtual functions

important and capable of supporting run-

time polymorphism is how they behave

when accessed via a pointer.

Virtual Functions

School of Computer Science sdandel.scs@dauniv.ac.in

• When a base pointer points to a derived object

that contains a virtual function, C++ determines

which version of that function to call based

upon the type of object pointed to by the pointer.

• And this determination is made at run time.

• Thus, when different objects are pointed to,

different versions of the virtual

function are executed.

Virtual Functions

School of Computer Science sdandel.scs@dauniv.ac.in

Virtual Function vs Function

Overloading

• At first glance, the redefinition of a virtual

function by a derived class appears similar

to function overloading.

• However, this is not the case, and the

term overloading is not applied to virtual

function redefinition because several

differences exist.

School of Computer Science sdandel.scs@dauniv.ac.in

• The prototype for a redefined virtual
function must match exactly the prototype
specified in the base class.

• This differs from overloading a normal
function, in which return types and the
number and type of parameters may differ.

• The term overriding is used to describe
virtual function redefinition by a derived
class.

Virtual Function vs Function

Overloading

School of Computer Science sdandel.scs@dauniv.ac.in

Differences

• When a virtual function is redefined, all aspects
of its prototype must be the same.

• If you change the prototype when you attempt to
redefine a virtual function, the function will
simply be considered overloaded by the C++
compiler, and its virtual nature will be lost.

• Another important restriction is that virtual
functions must be non static members of the
classes of which they are part.

• They cannot be friends.

• Constructor functions cannot be virtual, but
destructor functions can.

School of Computer Science sdandel.scs@dauniv.ac.in

Calling a Virtual Function Through a

Base Class Reference

• Polymorphic nature of a virtual function is also
available when called through a base-class
reference.

• A base-class reference can be used to refer to an
object of the base class or any object derived
from that base.

• When a virtual function is called through a base-
class reference, the version of the function
executed is determined by the object being
referred to at the time of the call.

School of Computer Science sdandel.scs@dauniv.ac.in

The Virtual Attribute Is Inherited

• When a virtual function is inherited, its virtual

nature is also inherited.

• This means that when a derived class that has

inherited a virtual function is itself used as a

base class for another derived class, the virtual

function can still be overridden.

• Put differently, no matter how many times a

virtual function is inherited, it remains virtual.

School of Computer Science sdandel.scs@dauniv.ac.in

Virtual Functions Are Hierarchical

• When a function is declared as virtual by a base

class, it may be overridden by a derived class.

• However, the function does not have to be

overridden.

• When a derived class fails to override a virtual

function, then when an object of that derived

class accesses that function, the function

defined by the base class is used.

• Example1:

School of Computer Science sdandel.scs@dauniv.ac.in

• Because inheritance is hierarchical in C++, it

makes sense that virtual functions are also

hierarchical.

• This means that when a derived class fails to

override a virtual function, the first redefinition

found in reverse order of derivation is used.

• Example2:

Virtual Functions Are Hierarchical

School of Computer Science sdandel.scs@dauniv.ac.in

Pure Virtual Functions

• In many situations there can be no meaningful
definition of a virtual function within a base class.

• For example, a base class may not be able to
define an object sufficiently to allow a base-class
virtual function to be created.

• Further, in some situations you will want to
ensure that all derived classes override a virtual
function.

• To handle these two cases, C++ supports the
pure virtual function.

School of Computer Science sdandel.scs@dauniv.ac.in

• A pure virtual function is a virtual function that

has no definition within the base class.

• To declare a pure virtual function, use this

general form:

virtual type func-name(parameter-list) = 0;

• When a virtual function is made pure, any

derived class must provide its own definition.

• If the derived class fails to override the pure

virtual function, a compile-time error will result.

Pure Virtual Functions

School of Computer Science sdandel.scs@dauniv.ac.in

Abstract Classes

• A class that contains at least one pure virtual

function is said to be abstract.

• Because an abstract class contains one or more

functions for which there is no definition (that is,

a pure virtual function), no objects of an abstract

class may be created.

• Instead, an abstract class constitutes an

incomplete type that is used as a foundation for

derived classes.

School of Computer Science sdandel.scs@dauniv.ac.in

• Although you cannot create objects of an

abstract class, you can create pointers

and references to an abstract class.

• This allows abstract classes to support

run-time polymorphism, which relies upon

base-class pointers and references to

select the proper virtual function.

Abstract Classes

School of Computer Science sdandel.scs@dauniv.ac.in

Early vs. Late Binding

• Early binding refers to events that occur at compile time.
In essence, early binding occurs when all information
needed to call a function is known at compile time.

• Early binding means that an object and a function call
are bound during compilation.)

• Examples of early binding include normal function calls
(including standard library functions), overloaded
function calls, and overloaded operators.

• The main advantage to early binding is efficiency.

• Because all information necessary to call a function is
determined at compile time, these types of function calls
are very fast.

School of Computer Science sdandel.scs@dauniv.ac.in

• The opposite of early binding is late binding. As it relates to C++,
late binding refers to function calls that are not resolved until run
time.

• Virtual functions are used to achieve late binding.

• As you know, when access is via a base pointer or reference, the

virtual function actually called is determined by the type of object
pointed to by the pointer.

• Because in most cases this cannot be determined at compile time,
the object and the function are not linked until run time.

• The main advantage to late binding is flexibility.

• Unlike early binding, late binding allows you to create programs that
can respond to events occurring while the program executes without
having to create a large amount of "contingency code."

• Keep in mind that because a function call is not resolved until run
time, late binding can make for somewhat slower execution times.

Early vs. Late Binding

School of Computer Science sdandel.scs@dauniv.ac.in

Generic Functions(Templates)

• Through a generic function, a single general
procedure can be applied to a wide range of
data.

• By creating a generic function, you can define
the nature of the algorithm, independent of any
data.

• Once you have done this, the compiler will
automatically generate the correct code for the
type of data that is actually used when you
execute the function.

School of Computer Science sdandel.scs@dauniv.ac.in

• A generic function is created using the

keyword template.

• The normal meaning of the word "template"

accurately reflects its use in C++.

• It is used to create a template (or framework)

that describes what a function will do.

Generic Functions

School of Computer Science sdandel.scs@dauniv.ac.in

• The general form of a template function definition is shown here:
template <class Ttype>

ret-type func-name(parameter list)

{

// body of function

}

• Here, Ttype is a placeholder name for a data type used by the
function.

• This name may be used within the function definition.

• However, it is only a placeholder that the compiler will automatically
replace with an actual data type when it creates a specific version of
the function.

• Example: Swap

Generic Functions

School of Computer Science sdandel.scs@dauniv.ac.in

• Because swapargs() is a generic function,

the compiler automatically creates three

versions of swapargs() : one that will

exchange integer values, one that will

exchange floating-point values, and one

that will swap characters.

School of Computer Science sdandel.scs@dauniv.ac.in

Generic Function Restrictions

• Generic functions are similar to overloaded
functions except that they are more
restrictive.

• When functions are overloaded, you may
have different actions performed within the
body of each function.

• But a generic function must perform the
same general action for all versions—only
the type of data can differ.

School of Computer Science sdandel.scs@dauniv.ac.in

Generic Classes

• Generic classes are useful when a class

uses logic that can be generalized.

• For example, the same algorithms that

maintain a queue of integers will also work

for a queue of characters, and the same

mechanism that maintains a linked list of

mailing addresses will also maintain a

linked list of auto part information.

School of Computer Science sdandel.scs@dauniv.ac.in

Generic Classes

• The general form of a generic class declaration
is shown here:
template <class Ttype> class class-name {

.

..

}

• Here, Ttype is the placeholder type name, which
will be specified when a class is instantiated.

• If necessary, you can define more than one
generic data type using a comma-separated list.

School of Computer Science sdandel.scs@dauniv.ac.in

Generic Classes

• Once you have created a generic class, you
create a specific instance of that class using the
following general form:

class-name <type> ob;

• Here, type is the type name of the data that the
class will be operating upon.

• Member functions of a generic class are
themselves automatically generic.

• You need not use template to explicitly specify
them as such.

School of Computer Science sdandel.scs@dauniv.ac.in

Example Stack Template

• Two are integer stacks. Two are stacks of

• doubles. Pay special attention to these declarations:

• stack<char> s1, s2; // create two character stacks

• stack<double> ds1, ds2; // create two double stacks

• Notice how the desired data type is passed inside the
angle brackets. By changing the

• type of data specified when stack objects are created,
you can change the type of data

• stored in that stack. For example, by using the following
declaration, you can create

• another stack that stores character pointers.

• stack<char *> chrptrQ;

School of Computer Science sdandel.scs@dauniv.ac.in

• You can also create stacks to store data types that you
create. For example, if you want to use the following
structure to store address information,
struct addr {

char name[40];

char street[40];

char city[30];

char state[3];

char zip[12];

};

• then to use stack to generate a stack that will store
objects of type addr, use a declaration like this:

• stack<addr> obj;

• An Example with Two Generic Data Types:

Example Stack Template

School of Computer Science sdandel.scs@dauniv.ac.in

The Power of Templates

• Templates help you achieve one of the most
elusive goals in programming: the creation of
reusable code.

• Through the use of template classes you can
create frameworks that can be applied over and
over again to a variety of programming situations.

• Once you have written and debugged a template
class, you have a solid software component that
you can use with confidence in a variety of

different situations.

School of Computer Science sdandel.scs@dauniv.ac.in

• Template functions and classes are

already becoming commonplace in

programming, and this trend is expected to

continue.

• For example, the STL (Standard Template

Library) defined by C++ is, as its name

implies, built upon templates.

The Power of Templates

School of Computer Science sdandel.scs@dauniv.ac.in

Exception Handling Fundamentals

• C++ exception handling is built upon three

keywords: try, catch, and throw.

• In the most general terms, program statements

that you want to monitor for exceptions are

contained in a try block.

• If an exception (i.e., an error) occurs within the

try block, it is thrown (using throw).

• The exception is caught, using catch, and

processed.

School of Computer Science sdandel.scs@dauniv.ac.in

• Code that you want to monitor for exceptions

must have been executed from within a try

block. (Functions called from within a try

block may also throw an exception.)

• Exceptions that can be thrown by the

monitored code are caught by a catch

statement, which immediately follows the try

statement in which the exception was

thrown.

Exception Handling Fundamentals

School of Computer Science sdandel.scs@dauniv.ac.in

• The general form of try and catch are shown here.
try {

// try block

}

catch (type1 arg) {

// catch block

}

catch (type2 arg) {

// catch block

}

catch (type3 arg) {

// catch block

}

..

.

catch (typeN arg) {

// catch block

}

School of Computer Science sdandel.scs@dauniv.ac.in

Try

• The try can be as short as a few

statements within one function or as all

encompassing as enclosing the main()

function code within a try block (which

effectively causes the entire program to be

monitored).

School of Computer Science sdandel.scs@dauniv.ac.in

Catch

• When an exception is thrown, it is caught by its
corresponding catch statement, which processes the
exception.

• There can be more than one catch statement associated
with a try.

• Which catch statement is used is determined by the type
of the exception.

• That is, if the data type specified by a catch matches
that of the exception, then that catch statement is
executed (and all others are bypassed).

• When an exception is caught, arg will receive its value.
Any type of data may be caught, including classes that
you create.

• If no exception is thrown (that is, no error occurs within
the try block), then no catch statement is executed.

School of Computer Science sdandel.scs@dauniv.ac.in

Throw

• The general form of the throw statement is shown here:

throw exception;

• throw generates the exception specified by exception.

• If this exception is to be caught, then throw must be
executed either from within a try block itself, or from any
function called from within the try block (directly or
indirectly).

• If you throw an exception for which there is no applicable
catch statement, an abnormal program termination may
occur.

• Throwing an unhandled exception causes the standard
library function terminate() to be invoked.

School of Computer Science sdandel.scs@dauniv.ac.in

Example:

// A simple exception handling example.

#include <iostream>

using namespace std;

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

throw 100; // throw an error

cout << "This will not execute";

}

catch (int i) { // catch an error

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

Output

• This program displays the following output:
Start

Inside try block

Caught an exception -- value is: 100

End

School of Computer Science sdandel.scs@dauniv.ac.in

Example 2

// This example will not work.

#include <iostream>

using namespace std;

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

throw 100; // throw an error

cout << "This will not execute";

}

catch (double i) { // won't work for an int exception

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

Output

• This program produces the following

output because the integer exception will

not be caught by the catch(double i)

statement.
Start

Inside try block

Abnormal program termination

School of Computer Science sdandel.scs@dauniv.ac.in

Throwing an exception from a function outside the

try block.

#include <iostream>

using namespace std;

void Xtest(int test)

{

cout << "Inside Xtest, test is: " << test << "\n";

if(test) throw test;

}

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

Xtest(0);

Xtest(1);

Xtest(2);

}

catch (int i) { // catch an error

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

Output

• This program produces the following

output:
Start

Inside try block

Inside Xtest, test is: 0

Inside Xtest, test is: 1

Caught an exception -- value is: 1

End

School of Computer Science sdandel.scs@dauniv.ac.in

Using Multiple catch Statements

void Xhandler(int test)

{

try{

if(test) throw test;

else throw "Value is zero";

}

catch(int i) {

cout << "Caught Exception #: " << i << '\n';

}

catch(const char *str) {

cout << "Caught a string: ";

cout << str << '\n';

}

}

School of Computer Science sdandel.scs@dauniv.ac.in

int main()

{

cout << "Start\n";

Xhandler(1);

Xhandler(2);

Xhandler(0);

Xhandler(3);

cout << "End";

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

Output

• This program produces the following

output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught a string: Value is zero

Caught Exception #: 3

End

School of Computer Science sdandel.scs@dauniv.ac.in

Handling Derived-Class Exceptions

// Catching derived classes.

#include <iostream>

using namespace std;

class B {

};

class D: public B {

};

int main()

{

D derived;

try {

throw derived;

}

catch(B b) {

cout << "Caught a base class.\n";

}

catch(D d) {

cout << "This won't execute.\n";

}

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

Catching All Exceptions

• In some circumstances you will want an

exception handler to catch all exceptions

instead of just a certain type.

catch(...) {

// process all exceptions

}

School of Computer Science sdandel.scs@dauniv.ac.in

Example:

try{

if(test==0) throw test; // throw int

if(test==1) throw 'a'; // throw char

if(test==2) throw 123.23; // throw double

}

catch(...) { // catch all exceptions

cout << "Caught One!\n";

}

School of Computer Science sdandel.scs@dauniv.ac.in

Namespaces

• Purpose is to localize the names of
identifiers to avoid name collisions.

• The C++ programming environment has
seen an explosion of variable, function,
and class names.

• Prior to the invention of namespaces, all of
these names competed for slots in the
global namespace and many conflicts
arose.

School of Computer Science sdandel.scs@dauniv.ac.in

• For example, if your program defined a function
called abs() , it could (depending upon its
parameter list) override the standard library
function abs() because both names would be
stored in the global namespace.

• Name collisions were compounded when two or
more third-party libraries were used by the same
program.

• The situation can be particularly troublesome for
class names.

Namespaces

School of Computer Science sdandel.scs@dauniv.ac.in

• Prior to namespace, the entire C++ library was

defined within the global namespace (which was, of

course, the only namespace).

• Since the addition of namespace, the C++ library is

now defined within its own namespace, called std,

which reduces the chance of name collisions.

• You can also create your own namespaces within

your program to localize the visibility of any names

that you think may cause conflicts.

• This is especially important if you are creating class

or function libraries.

School of Computer Science sdandel.scs@dauniv.ac.in

Namespace Fundamentals

• The namespace keyword allows you to
partition the global namespace by creating
a declarative region.

• In essence, a namespace defines a
scope. The general form of namespace is
shown here:

namespace name {

// declarations

}

• Anything defined within a namespace statement is
within the scope of that namespace.

School of Computer Science sdandel.scs@dauniv.ac.in

Example:
namespace CounterNameSpace {

int upperbound;

int lowerbound;

class counter {

int count;

public:

counter(int n) {

if(n <= upperbound) count = n;

else count = upperbound;

}

void reset(int n) {

if(n <= upperbound) count = n;

}

int run() {

if(count > lowerbound) return count--;

else return lowerbound;

}

};

}

School of Computer Science sdandel.scs@dauniv.ac.in

int main()

{

CounterNameSpace::upperbound = 100;

CounterNameSpace::lowerbound = 0;

CounterNameSpace::counter ob1(10);

int i;

do {

i = ob1.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

cout << endl;

CounterNameSpace::counter ob2(20);

do {

i = ob2.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

cout << endl;

ob2.reset(100);

CounterNameSpace::lowerbound = 90;

do {

i = ob2.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

using

• Having to specify the namespace and the
scope resolution operator each time you
need to refer to one quickly becomes a
tedious chore.

• The using statement was invented to
alleviate this problem.

• The using statement has these two

general forms:

• using namespace name;

• using name::member;

School of Computer Science sdandel.scs@dauniv.ac.in

Namespaces

• Namespaces allow to group entities like classes,
objects and functions under a name.

• This way the global scope can be divided in
"sub-scopes", each one with its own name.

• The format of namespaces is:

namespace identifier
{

entities
}

School of Computer Science sdandel.scs@dauniv.ac.in

• For example:

• namespace myNamespace

{

int a, b;

}

• In this case, the variables a and b are normal
variables declared within a namespace called
myNamespace.

• In order to access these variables from outside
the myNamespace namespace we have to use
the scope operator ::

School of Computer Science sdandel.scs@dauniv.ac.in

• // namespaces

#include <iostream>

using namespace std;

namespace first

{ int var = 5; }

namespace second

{ double var = 3.1416; }

int main ()

{

cout << first::var << endl;

cout << second::var << endl;

return 0;

}

//No redefinition errors happen thanks to namespaces.

School of Computer Science sdandel.scs@dauniv.ac.in

• // using

#include <iostream>

using namespace std;

namespace first

{ int x = 5; int y = 10; }

namespace second

{ double x = 3.1416; double y = 2.7183; }

int main ()

{

using first::x;

using second::y;

cout << x << endl; cout << y << endl;

cout << first::y << endl; cout << second::x << endl;

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

• The keyword using can also be used as a directive to
introduce an entire namespace:

• // using

#include <iostream>

using namespace std;

namespace first

{ int x = 5; int y = 10; }

namespace second

{ double x = 3.1416; double y = 2.7183; }

int main ()

{

using namespace first;

cout << x << endl; cout << y << endl;

cout << second::x << endl; cout << second::y << endl;

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

• using and using namespace have validity

only in the same block in which they are

stated

• For example, if we had the intention to first

use the objects of one namespace and then

those of another one, we could do

something like:

School of Computer Science sdandel.scs@dauniv.ac.in

• // using namespace example

#include <iostream>

using namespace std;

namespace first

{ int x = 5; }

namespace second { double x = 3.1416; }

int main () {

{

using namespace first;

cout << x << endl;

}

{

using namespace second;

cout << x << endl;

}

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

Namespace alias

• We can declare alternate names for

existing namespaces according to the

following format:

• namespace new_name = current_name;

School of Computer Science sdandel.scs@dauniv.ac.in

Namespace std

• All the files in the C++ standard library

declare all of its entities within the std

namespace.

• That is why we have generally included

the using namespace std;

School of Computer Science sdandel.scs@dauniv.ac.in

• In the first form, name specifies the name
of the namespace you want to access.

• All of the members defined within the
specified namespace are brought into view
(i.e., they

become part of the current namespace)
and may be used without qualification.

• In the second form, only a specific
member of the namespace is made
visible.

School of Computer Science sdandel.scs@dauniv.ac.in

Standard Template Library (STL).

• It provides general-purpose, templatized classes
and functions that implement many popular and
commonly used algorithms and data structures,

including, for example, support for vectors, lists,
queues, and stacks.

• Because the STL is constructed from template

classes, the algorithms and data structures can
be applied to nearly any type of data.

• At the core of the standard template library are
three foundational items: containers,

algorithms, and iterators.

School of Computer Science sdandel.scs@dauniv.ac.in

Containers

• Containers are objects that hold other objects,

and there are several different types.

• For example, the vector class defines a

dynamic array, deque creates a double-ended

• queue, and list provides a linear list.

• These containers are called sequence

containers because in STL terminology, a

sequence is a linear list.

School of Computer Science sdandel.scs@dauniv.ac.in

Algorithms

• Algorithms act on containers. They provide

the means by which you will manipulate

the contents of containers.

• Their capabilities include initialization,

sorting, searching, and transforming the

contents of containers.

School of Computer Science sdandel.scs@dauniv.ac.in

Iterators

• Iterators are objects that are, more or less,

pointers.

• They give you the ability to cycle through

the contents of a container in much the

same way that you would use a pointer to

cycle through an array.

School of Computer Science sdandel.scs@dauniv.ac.in

The Container Classes

School of Computer Science sdandel.scs@dauniv.ac.in

• Since the names of the
generic placeholder types
in a template class
declaration are arbitrary,
the container classes
declare typedefed
versions of these types.

• This makes the type
names concrete. Some of
the most common
typedef names are
shown here:

School of Computer Science sdandel.scs@dauniv.ac.in

General Theory of Operation

• First, you must decide on the type of container
that you wish to use.

• Once you have chosen a container, you will use
its member functions to add elements to the
container, access or modify those elements, and
delete elements.

• One of the most common ways to access the
elements within a container is through an iterator.

• The sequence and the associative containers
provide the member functions begin() and end() ,
which return iterators to the start and end of the
container, respectively.

School of Computer Science sdandel.scs@dauniv.ac.in

Example: Vectors

• The vector class supports a dynamic array.

• This is an array that can grow as needed. As
you know, in C++ the size of an array is fixed at
compile time.

• While this is by far the most efficient way to
implement arrays, it is also the most restrictive
because the size of the array cannot be

• adjusted at run time to accommodate changing
program conditions.

• A vector solves this problem by allocating
memory as needed.

School of Computer Science sdandel.scs@dauniv.ac.in

School of Computer Science sdandel.scs@dauniv.ac.in

Vector
// Demonstrate a vector.

#include <iostream>

#include <vector>

#include <cctype>

using namespace std;

int main()

{

vector<char> v(10); // create a vector of length 10

int i;

// display original size of v

cout << "Size = " << v.size() << endl;

// assign the elements of the vector some values

for(i=0; i<10; i++) v[i] = i + 'a';

// display contents of vector

cout << "Current Contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

cout << "Expanding vector\n";

/* put more values onto the end of the vector,

it will grow as needed */

School of Computer Science sdandel.scs@dauniv.ac.in

for(i=0; i<10; i++) v.push_back(i + 10 + 'a');

// display current size of v

cout << "Size now = " << v.size() << endl;

// display contents of vector

cout << "Current contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

// change contents of vector

for(i=0; i<v.size(); i++) v[i] = toupper(v[i]);

cout << "Modified Contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << endl;

return 0;

}

School of Computer Science sdandel.scs@dauniv.ac.in

Accessing a Vector Through an

Iterator

int main()

{

vector<char> v(10); // create a vector of length 10

vector<char>::iterator p; // create an iterator

int i;

// assign elements in vector a value

p = v.begin();

i = 0;

while(p != v.end()) {

*p = i + 'a';

p++;

i++;

}

School of Computer Science sdandel.scs@dauniv.ac.in

School of Computer Science sdandel.scs@dauniv.ac.in

Do Practice

School of Computer Science sdandel.scs@dauniv.ac.in

